Left Termination of the query pattern
gopher_in_2(g, a)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
gopher(nil, nil).
gopher(cons(nil, Y), cons(nil, Y)).
gopher(cons(cons(U, V), W), X) :- gopher(cons(U, cons(V, W)), X).
Queries:
gopher(g,a).
We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
gopher_in(cons(cons(U, V), W), X) → U1(U, V, W, X, gopher_in(cons(U, cons(V, W)), X))
gopher_in(cons(nil, Y), cons(nil, Y)) → gopher_out(cons(nil, Y), cons(nil, Y))
gopher_in(nil, nil) → gopher_out(nil, nil)
U1(U, V, W, X, gopher_out(cons(U, cons(V, W)), X)) → gopher_out(cons(cons(U, V), W), X)
The argument filtering Pi contains the following mapping:
gopher_in(x1, x2) = gopher_in(x1)
cons(x1, x2) = cons(x1, x2)
U1(x1, x2, x3, x4, x5) = U1(x5)
nil = nil
gopher_out(x1, x2) = gopher_out(x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
gopher_in(cons(cons(U, V), W), X) → U1(U, V, W, X, gopher_in(cons(U, cons(V, W)), X))
gopher_in(cons(nil, Y), cons(nil, Y)) → gopher_out(cons(nil, Y), cons(nil, Y))
gopher_in(nil, nil) → gopher_out(nil, nil)
U1(U, V, W, X, gopher_out(cons(U, cons(V, W)), X)) → gopher_out(cons(cons(U, V), W), X)
The argument filtering Pi contains the following mapping:
gopher_in(x1, x2) = gopher_in(x1)
cons(x1, x2) = cons(x1, x2)
U1(x1, x2, x3, x4, x5) = U1(x5)
nil = nil
gopher_out(x1, x2) = gopher_out(x2)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOPHER_IN(cons(cons(U, V), W), X) → U11(U, V, W, X, gopher_in(cons(U, cons(V, W)), X))
GOPHER_IN(cons(cons(U, V), W), X) → GOPHER_IN(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
gopher_in(cons(cons(U, V), W), X) → U1(U, V, W, X, gopher_in(cons(U, cons(V, W)), X))
gopher_in(cons(nil, Y), cons(nil, Y)) → gopher_out(cons(nil, Y), cons(nil, Y))
gopher_in(nil, nil) → gopher_out(nil, nil)
U1(U, V, W, X, gopher_out(cons(U, cons(V, W)), X)) → gopher_out(cons(cons(U, V), W), X)
The argument filtering Pi contains the following mapping:
gopher_in(x1, x2) = gopher_in(x1)
cons(x1, x2) = cons(x1, x2)
U1(x1, x2, x3, x4, x5) = U1(x5)
nil = nil
gopher_out(x1, x2) = gopher_out(x2)
U11(x1, x2, x3, x4, x5) = U11(x5)
GOPHER_IN(x1, x2) = GOPHER_IN(x1)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
GOPHER_IN(cons(cons(U, V), W), X) → U11(U, V, W, X, gopher_in(cons(U, cons(V, W)), X))
GOPHER_IN(cons(cons(U, V), W), X) → GOPHER_IN(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
gopher_in(cons(cons(U, V), W), X) → U1(U, V, W, X, gopher_in(cons(U, cons(V, W)), X))
gopher_in(cons(nil, Y), cons(nil, Y)) → gopher_out(cons(nil, Y), cons(nil, Y))
gopher_in(nil, nil) → gopher_out(nil, nil)
U1(U, V, W, X, gopher_out(cons(U, cons(V, W)), X)) → gopher_out(cons(cons(U, V), W), X)
The argument filtering Pi contains the following mapping:
gopher_in(x1, x2) = gopher_in(x1)
cons(x1, x2) = cons(x1, x2)
U1(x1, x2, x3, x4, x5) = U1(x5)
nil = nil
gopher_out(x1, x2) = gopher_out(x2)
U11(x1, x2, x3, x4, x5) = U11(x5)
GOPHER_IN(x1, x2) = GOPHER_IN(x1)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 1 less node.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
GOPHER_IN(cons(cons(U, V), W), X) → GOPHER_IN(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
gopher_in(cons(cons(U, V), W), X) → U1(U, V, W, X, gopher_in(cons(U, cons(V, W)), X))
gopher_in(cons(nil, Y), cons(nil, Y)) → gopher_out(cons(nil, Y), cons(nil, Y))
gopher_in(nil, nil) → gopher_out(nil, nil)
U1(U, V, W, X, gopher_out(cons(U, cons(V, W)), X)) → gopher_out(cons(cons(U, V), W), X)
The argument filtering Pi contains the following mapping:
gopher_in(x1, x2) = gopher_in(x1)
cons(x1, x2) = cons(x1, x2)
U1(x1, x2, x3, x4, x5) = U1(x5)
nil = nil
gopher_out(x1, x2) = gopher_out(x2)
GOPHER_IN(x1, x2) = GOPHER_IN(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
GOPHER_IN(cons(cons(U, V), W), X) → GOPHER_IN(cons(U, cons(V, W)), X)
R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2) = cons(x1, x2)
GOPHER_IN(x1, x2) = GOPHER_IN(x1)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
GOPHER_IN(cons(cons(U, V), W)) → GOPHER_IN(cons(U, cons(V, W)))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
GOPHER_IN(cons(cons(U, V), W)) → GOPHER_IN(cons(U, cons(V, W)))
Used ordering: POLO with Polynomial interpretation [25]:
POL(GOPHER_IN(x1)) = 2·x1
POL(cons(x1, x2)) = 2 + 2·x1 + x2
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.